Eigenvalues with respect to a weight for general boundary value problems on networks

نویسندگان

چکیده

In this work we analyze self-adjoint boundary value problems on networks for Schrödinger operators, in which a part of the with Neumann condition is always considered. We first characterize when energy positive semi-definite space functions satisfying null conditions. To do this, fundamental tools are Doob transform and discrete version trace function. Then, raise eigenvalue respect to weight general prove Mercer Theorem. Finally, apply obtained results Dirichlet-Robin problem star-like network.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Principal Eigenvalues for Boundary Value Problems with Inde nite Weight and Robin Boundary Conditions

We investigate the existence of principal eigenvalues (i.e., eigenval-ues corresponding to positive eigenfunctions) for the boundary value problem ?u(x) = g(x)u(x) on D; @u @n (x)+u(x) = 0 on @D where D is a bounded region in R N , g is an indeenite weight function and 2 R may be positive, negative or zero.

متن کامل

On the Continuity of Principal Eigenvalues for Boundary Value Problems with Indefinite Weight Function with Respect to Radius of Balls in Rn

where D is a bounded domain with smooth boundary, g changes sign on D, and f is some function of class C1 such that f(0)= 0= f(1). Fleming’s results suggested that nontrivial steady-state solutions were bifurcating the trivial solutions u ≡ 0 and u ≡ 1. In order to investigate these bifurcation phenomena, it was necessary to understand the eigenvalues and eigenfunctions of the corresponding lin...

متن کامل

Boundedness and Monotonicity of Principal Eigenvalues for Boundary Value Problems with Indefinite Weight Functions

We study the principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem: −∆u(x) = λg(x)u(x), x ∈ D; (∂u/∂n)(x) + αu(x) = 0, x ∈ ∂D, where ∆ is the standard Laplace operator, D is a bounded domain with smooth boundary, g : D → R is a smooth function which changes sign on D and α∈R. We discuss the relation between α and the principal eigenval...

متن کامل

Eigenvalues of complementary Lidstone boundary value problems

where l > 0. The values of l are characterized so that the boundary value problem has a positive solution. Moreover, we derive explicit intervals of l such that for any l in the interval, the existence of a positive solution of the boundary value problem is guaranteed. Some examples are also included to illustrate the results obtained. Note that the nonlinear term F depends on y’ and this deriv...

متن کامل

L2-transforms for boundary value problems

In this article, we will show the complex inversion formula for the inversion of the L2-transform and also some applications of the L2, and Post Widder transforms for solving singular integral equation with trigonometric kernel. Finally, we obtained analytic solution for a partial differential equation with non-constant coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2021

ISSN: ['1873-1856', '0024-3795']

DOI: https://doi.org/10.1016/j.laa.2020.03.046